
Object Detection Analysis Code (v2)

Derek Hoiem
University of Illinois at Urbana-Champaign

July 31, 2014

1 Overview

Object detection is an important part of computer vision. Typically, the task is defined as providing the
bounding boxes that correspond to each instance of an object category, such as “person” or “car” in a
collection of images. Hoiem et al. [3] introduced a set of tools to interpret the performance of such object
detection systems. We have updated those tools. In this document, we provide a brief description of the tools
with some added commentary on their use. Consult the text file included in the code package for details on
usage. When using the error analysis tool, please cite the original Hoiem et al. ECCV 2012 paper.

2 Updates

Version 2 of the detection analysis tool includes the following updates:
• Code is rewritten to improve readability and make it easier to adapt to new datasets and detectors.

See the text file included in the code package for a more detailed description of how to use the code.
• A new visualization that shows both false positive trends and recall as a function of detection rank is

included, which provides an easily interpretable summary of detector performance.
• Weak and strong localization criteria can be easily set, though defaults are the same as previous version.

3 Analyzing detector performance

False Negatives: Detectors may miss objects for a variety of reasons, such as unusual appearance, low
resolution, occlusion, perspective effects, and so on. Such misses or low-confidence detections are called
false negatives. On the PASCAL VOC 2007 dataset, our original tool characterizes performance for objects
with various characteristics using the normalized AP measure. This measure normalizes the computation of
average precision to balance for the number of positive examples in the subset of objects under consideration.
A complete description and justification of these tools is in the original paper [3].

False Positives: Detectors may also incorrectly assign bounding boxes that do not accurately cir-
cumscribe an object from the target category. Such errors are called false positives. We characterize false
positives as due to localization error (bounding box overlaps with a target object but not well enough to
meet the VOC criterion), confusion with similar objects (e.g., confusing a motorcycle for a bicycle), confusion
with dissimilar objects (e.g., confusing a potted plant for a bicycle), and confusion with background (e.g.,
confusing a pair of glasses or another unlabeled object/surface for a bicycle).

The PASCAL VOC criterion for localization is 0.5 intersection/union of the detection bounding box with
the ground truth bounding box. We call this criterion “strong” localization and consider “weak” localization
to be 0.1 intersection/union. While it is possible for a detection to accidentally achieve 0.1 intersection/union,
we find that confident detections that are weakly localized are often reasonable mistakes, such as providing a
box around the cat head but missing the body, or grouping a pair of nearby airplanes into one bounding box.
In this update, we experimented with changing the weak localization criterion (specifically requiring that the
detection box is mostly contained in the ground truth box) but found that doing so incorrectly characterized
detections that appeared to be localization errors as background.

See Hoiem et al. [3] for more detail on the false positive analysis tools.
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New Visualization: Our first version of the analysis code (described in the paper) focuses on charac-
terizing the types of false positives, such as what percent of confident false positives are due to localization
error vs. confusion with similar objects. However, focusing purely on characteristics of errors can sometimes
obscure improvements. For example, we might want to know whether a change to a detection algorithm
reduced the confusion with similar categories and increased the number of true detections at a given rank
(rather than swapping one kind of error for another). Also, one detector that makes very few mistakes
(whether “reasonable” or not) may be preferred over a detector that makes many reasonable mistakes.

We introduce a new visualization that summarizes detection performance and types of false positives in
a single plot. See Figure ?? for examples. The visualization includes stacked area plots that display the
cumulative fraction of detections that are correct or due to localization, confusion with similar, confusion
with other, or confusion with background. An improvement in a detector algorithm should push the white
area upward. The x-axis is normalized by the total number of non-“difficult” objects (VOC notation for
objects that are considered too small or occluded to be required for detection) in the category, so a perfect
detector would achieve 100% fraction of correct detections up to 1 on the x-axis, and remaining detections
would be split among various types of errors. More typically, the top-ranked detections are highly accurate,
and the cumulative fraction of errors increases slowly with detection rank. The visualization also includes
line plots of recall with strong localization (solid red) and weak localization (dashed red) criteria on the
same axes. The y-axis is recall percentage; the x-axis, the number of detections divided by the total number
of objects. For a perfect detector, the recall would match the number of detections until the normalized
number of detections is 1; then, recall would be saturated at 1. Note, however, that the plot is semi-log
so a perfect recall plot is not a straight line. Typically, a detector’s recall will steadily improve until the
normalized number of detections reaches 1 or 2, and then most remaining detections will be incorrect, with
recall plateauing at 60-90%, depending on the category and detector.

4 Using the Detection Analysis Tools

The following process is suggested:
1. Modify detector/dataset parameters in the analysis code. See text file for details.
2. Run detectionAnalysisScript.m after checking settings at the top of the file. This produces figures

and tex files.
3. Remove white space around the pdf figures (e.g., with a script in Acrobat for batch processing). The

figures plot impact strong.pdf and plot fp dttrendarea *.pdf are the most useful for a quick
summary. The impact plots are only available for a subset of categories in the VOC 2007 dataset
(because they require additional annotation).

4. Compile the latex document detectionAnalysisAutoReportTemplate.tex and view.
5. View false positive analysis *.txt and missed object characteristis *.txt for further details

and view additional qualitative results.
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Figure 1: New visualization of detection performance: Top two rows: performance comparison on
dog and car detection. Bottom two rows: performance summary for animal and vehicle categories. See text
for details. Summaries are computed by averaging recall and false positive fractions across categories at
points normalized by number of total objects for each category. CNN performs similarly to Vedaldi et al.
for dog detection, except that it greatly reduces the confusion with similar categories. CNN’s improvement
in vehicle performance is less dramatic than for animals at low recall, but it also achieves much higher recall
within a limited number of detections.
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