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Abstract

Humans have an amazing ability to instantly grasp the
overall 3D structure of a scene – ground orientation, rela-
tive positions of major landmarks, etc – even from a single
image. This ability is completely missing in most popular
recognition algorithms, which pretend that the world is flat
and/or view it through a patch-sized peephole. Yet it seems
very likely that having a grasp of this “surface layout” of a
scene should be of great assistance for many tasks, includ-
ing recognition, navigation, and novel view synthesis.

In this paper, we take the first step towards construct-
ing the surface layout, a labeling of the image intogeomet-
ric classes. Our main insight is to learn appearance-based
models of these geometric classes, which coarsely describe
the 3D scene orientation of each image region. Our mul-
tiple segmentation framework provides robust spatial sup-
port, allowing a wide variety of cues (e.g., color, texture,
and perspective) to contribute to the confidence in each geo-
metric label. In experiments on a large set of outdoor im-
ages, we evaluate the impact of the individual cues and de-
sign choices in our algorithm. We further demonstrate the
applicability of our method to indoor images, describe po-
tential applications, and discuss extensions to a more com-
plete notion of surface layout.

1. Introduction

Consider the photograph on Figure 1. Modern computer
vision techniques could be used to recover a lot of useful
information about the image: detect people’s faces, find bi-
cycles and cars, perform optical character recognition, find
shadows and recover illuminant direction, segment the im-
age based on color, texture, or contours, and much much
more. Yet, does the computer actuallyunderstandthe scene
depicted in the photograph? Can it reason about 3D rela-
tionships between objects (e.g. car on road), find walkable
free-space, or capture the spatial layout of the scene? Un-

Figure 1. The streets of Beijing. Scene understanding requires
knowledge of the spatial layout, content, setting, and situation of
the scene. In this paper, we take the first steps by estimating the
surface layout of the scene, coarsely labeling the major surfaces.

fortunately, the answer today is largely no.
Alas, this information, while trivial for us with but a

quick glance at the photograph, is largely beyond today’s
computer vision algorithms. If we want to bring machine
vision capabilities closer to those of a human, we need to
connect the various pieces of information in the image and
globally reason about the scene and its contents.

In this paper, we address a small but important compo-
nent of the scene understanding problem. Our goal is to
recover the roughsurface layoutof a scene, a sort of theater
stage representation of the major surfaces and their relation-
ships to each other. Having such a representation would
then allow each object to be physically “placed” within the
frame and permit reasoning between the different objects
and their 3D environment.

We take the first steps toward constructing this surface
layout by proposing a technique to estimate the orientations
of large surfaces in outdoor images. Rather than attempting
to recover exact 3D orientations at every point in the scene,
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Figure2. Surface layout. On these images and elsewhere, main class labels are indicated by colors (green=support, red=vertical, blue=sky)
and subclass labels are indicated by markings (left/up/right arrows for planar left/center/right, ‘O’ for porous, ‘X’ for solid).

our goal is to label the image into coarse geometric classes.
Each image pixel is classified as either being parallel to the
ground plane, belonging to a surface that sticks up from the
ground, or being part of the sky. Surfaces sticking up from
the ground are then subdivided into planar surfaces facing
left, right or toward the camera and non-planar surfaces, ei-
ther porous (e.g. leafy vegetation or a mesh of wires) or
solid (e.g. a person or tree trunk).

We pose the problem of 3D surface estimation in terms
of statistical learning. Rather than trying to explicitly com-
pute all of the required geometric parameters from the im-
age, we rely on other images (a training set) to furnish this
information in an implicit way, through recognition. But
in contrast to most recognition approaches that model se-
mantic classes, such as cars, vegetation, roads, or build-
ings [35, 12, 26, 47], our goal is to modelgeometric classes
that depend on the orientation of a physical object in the
scene. For instance, a piece of plywood lying on the ground
and the same piece of plywood propped up by a board be-
long to same semantic class but different geometric classes.
Unlike other reconstruction techniques that require multiple
images (e.g. [38]), manual labeling [9, 31], or very spe-
cific scenes [17], we want to automatically estimate the 3D
surface properties of general outdoor scenes from a single
image.

Our main insight is that 3D geometric information can be
obtained from a single image by learning appearance-based
models of surfaces at various orientations. We present a
framework that progressively builds structural knowledge
of the scene by alternately using estimated scene struc-
ture to compute more complex image features and using
these more complex image features to gain more structural
knowledge. We demonstrate the effectiveness of our ap-
proach and provide a thorough analysis of the impact of
various design choices of our algorithm. We conclude by
suggesting ways to improve and complete the surface lay-
out and by describing potential applications.

2. Background

In the past twenty years, computer vision researchers
have made tremendous progress in object detection, face

recognition, structure from motion, matching, and tracking.
When it comes to general understanding of the visual scene,
or “seeing” as humans think of seeing, however, capabili-
ties are virtually non-existent. Though much of the early
work in computer vision focused on scene understanding,
it eventually became clear that the algebraic and rule-based
approaches of the day could not handle the complexity and
irregularity of the world. We believe that now is the time
to resume such efforts, combining intuitions from the early
years of computer and human vision research with the sta-
tistical, data-driven tools and computational power of today.

2.1. Theories of Vision

For centuries, scholars of the body and mind have pon-
dered the mental metamorphosis from the visual field (2D
retinal image) to the visual world (our perception of 3D en-
vironment). Hermann von Helmholtz, the most notable of
the 19th century empiricists, believed in an “unconscious
inference”, in which our perception of the scene is based
not only on the immediate sensory evidence, but on our
long history of visual experiences and interactions with the
world [55]. This inference is based on an accumulation of
evidence from a variety of cues, such as the horizon, shad-
ows, atmospheric effects, and familiar objects.

In the opening pages of his 1950 bookPerception of the
Visual World [15], James Gibson declared, “The elemen-
tary impressions of a visual world are those of surface and
edge.” Gibson laid out a theory of visual space perception
which includes the following tenets: 1) the fundamental
condition for seeing the visible world is an array of physical
surfaces, 2) these surfaces are of two extreme types: frontal
and longitudinal, and 3) perception of depth and distance
is reducible to the problem of the perception of longitudi-
nal surfaces. Gibson further theorized that gradients are the
mechanism by which we perceive surfaces.

By the 1970s, several researchers had become interested
in computational models for human vision. Barrow and
Tenenbaum proposed the notion ofintrinsic images[4],
capturing characteristics – such as reflectance, illumination,
surface orientation, and distance – that humans are able to
recover from an image under a wide range of viewing condi-
tions. Meanwhile, David Marr proposed a three-stage the-
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(a)Bottom-up process (b) Top-down process (c) Result

Figure 3. A system developed in 1978 by Ohta, Kanade and Sakai [36, 35] for knowledge-based interpretation of outdoor natural scenes.
The system is able to label an image (c) into semantic classes: S-sky, T-tree, R-road, B-building, U-unknown. Figure used with permission.

ory of human visual processing [32]: from primal sketch
(encoding edges and regions boundaries), to 21

2D sketch
(encoding local surface orientations and discontinuities) to
the full 3D model representation.

Koenderink and colleagues [25, 24] experimentally mea-
sured the human’s ability to infer depth and local orientation
from an image. Their subjects were not able to accurately
(or even consistently) estimate depths of a 3D form (e.g., a
statue), but could indicate local surface orientations. They
further provided evidence that people cannot determine the
relative depth of two points unless there is some visible and
monotonic surface that connects them. These experimental
results confirm the intuitions of Gibson and others – that hu-
mans perceive the 3D scene, not in terms of absolute depth
maps, but in terms of surfaces.

Irving Biederman [5] characterized a well-organized
scene as one that satisfies five relational constraints: sup-
port, interposition, probability, position, and size. Though
unable to explain how these relationships are perceived,
Biederman supplied convincing evidence that they are ex-
tremely valuable for scene understanding and, indeed, are
heavily used in the human vision process.

Our current work has been heavily influenced by all of
these ideas. Our approach shares Helmholtz’ intuition and
empiricist philosophy by learning models of surfaces from
the “experience” of a training set and by drawing from a
large and diverse set of visual cues. Our classification of
an image into support, vertical, and sky regions corresponds
strongly with Gibson’s notions of basic surface type, though
we differ from his belief in the primacy of gradient-based
methods. Our surface layout is also philosophically similar
to Marr’s 21

2D sketch. However, we differ from it in sev-
eral important ways: 1) we use statistical learning instead
of relying solely on a geometric or photometric methodol-
ogy (e.g. Shape-from-X methods), 2) we are interested in
a rough sense of the scene surfaces, not exact orientations,

and 3) our surface layout is to be usedwith the original im-
age data, not as a substitute for it.

Overall, our work can be seen as an attempt to offer a
partial solution to the spatial understanding of the scene,
providing at least a computational explanation for what re-
mains a physiological phenomenon – recovery of the 3D
world from the 2D image.

2.2. Early Computer Vision and AI

In its early days, computer vision had but a single grand
goal: to provide a complete semantic interpretation of an in-
put image by reasoning about the 3D scene that generated it.
While initial efforts in scene understanding focused largely
on toy “blocks worlds” [41, 16], by the 1970s, several ex-
tremely sophisticated approaches were proposed for han-
dling real indoor and outdoor images. For instance, Yaki-
movsky and Feldman [56] developed a Bayesian framework
for analyzing road scenes that combined segmentation with
semantic domain information at the region and inter-region
level. Tenenbaum and Barrow proposedInterpretation-
Guided Segmentation[51] which labeled image regions, us-
ing constraint propagation to arrive at a globally consis-
tent scene interpretation. Ohta, Kanade and Sakai [36, 35]
combined bottom-up processing with top-down control for
semantic segmentation of general outdoor images. Start-
ing with an oversegmentation, the system generated “plan
images” by merging low-level segments. Domain knowl-
edge was represented as a semantic network in the bottom-
up process (Figure 3a) and as a set of production rules in
the top-down process (Figure 3b). Results of applying this
semantic interpretation to an outdoor image are shown on
Figure 3c. By the late 1970s, several complete image un-
derstanding systems were being developed including such
pioneering work as Brooks’ACRONYM[7] and Hanson and
Riseman’sVISIONS[19]. As an example,VISIONSwas an
extremely ambitious system that analyzed a scene on many
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interrelated levels including segments, 3D surfaces and vol-
umes, objects, and scene categories.

It is interesting to note that a lot of what are considered
modern ideas in computer vision – region and boundary de-
scriptors, superpixels, combining bottom-up and top-down
processing, Bayesian formulation, feature selection, etc. –
were well-known three decades ago! But, though much was
learned in the development of these early systems, none of
them were particularly successful, mainly because of the
heavy use of hand-tuned heuristics which did not general-
ize well to new data. This, in turn, lead people to doubt
the very goal of complete image understanding. However,
it seems that the early pioneers were simply ahead of their
time. They had no choice but to rely on heuristics because
they lacked the large amounts of data and the computational
resources tolearn the relationships governing the structure
of our visual world. The advancement of learning methods
in the last decade brings renewed hope for a complete scene
understanding solution.

2.3. Modern Computer Vision

The failures of early researchers to provide robust so-
lutions to many real-world tasks led to a new paradigm in
computer vision: rather than treat the image as a projection
from 3D, why not simply analyze it as a 2D pattern? Statis-
tical methods and pattern recognition became increasingly
popular, leading to breakthroughs in face recognition, ob-
ject detection, image processing, and other areas. Success
came from leveraging modern machine learning tools, large
data sets, and increasingly powerful computers to develop
data-driven, statistical algorithms for image analysis.

It has become increasingly clear, however, that a purely
2D approach to vision cannot adequately address the larger
problem of scene understanding because it fails to exploit
the relationships that exist in the 3D scene. Several re-
searchers have responded, and much progress in recent
years has been made in spatial perception and representa-
tion and more global methods for reasoning about the scene.

Song-Chun Zhu and colleagues have contributed much
research in computational algorithms for spatial perception
and model-driven segmentation. Guo, Zhu, and Wu [11]
propose an implementation of Marr’s primal sketch, and
Han and Zhu [18] describe a grammar for parsing im-
age primitives. Tu and Zhu [54] describe a segmentation
method based on a generative image representation that
could be used to sample multiple segmentations of an im-
age. Barbu and Zhu [3] propose a model-driven segmenta-
tion with potential applications to image parsing [53].

Oliva and Torralba [37] characterize the “spatial enve-
lope” of scenes with a set of continuous attributes: natu-
ralness, openness, roughness, expansion, and ruggedness.
They further provide an algorithm for estimating these prop-
erties from the spectral signature of an image and, in [52],

used similar algorithms to estimate mean depth of the scene.
These concepts have since been applied to object recogni-
tion [33, 48], and Sudderthet al. [49] have demonstrated
the ability to recover some depth information based on the
objects in an image.

Some recent work has also attempted recovery of 3D in-
formation from a single image. Han and Zhu [17] recon-
struct wire-like objects in simple scenes. Saxena, Chung,
and Ng [43] present a method to learn depth from single out-
door images based on low-level features in an MRF model,
and Delage, Lee, and Ng [10] present a method for recon-
structing indoor scenes from a single image.

We draw inspiration from Oliva and Torralba’s global
scene representation and the model-driven stochastic seg-
mentation processes of Barbu, Tu, and Zhu. The depth esti-
mation work of Saxenaet al. could be used to complement
our surface layout by providing evidence for the viewpoint
and occluding contours.

3. Geometric Classes

We pose surface layout recovery as a recognition prob-
lem. Our goal is to label an image of an outdoor scene into
coarse geometric classes that will be useful for tasks such
as navigation, object recognition, and general scene under-
standing. The feasibility of our goal arises from two tenden-
cies that we observed in 300 outdoor images collected using
Google image search. The first is that nearly all pixels (over
97%) belong to horizontal (support) surfaces, nearly verti-
cal surfaces, or the sky. The second is that, in most images,
the camera axis is roughly aligned with the ground plane,
allowing us to reconcile world-centric cues (e.g. material)
with view-centric cues (e.g. perspective). Figure 2 shows
images labeled with these geometric classes.

3.1. Main Classes

Every region in the image is categorized into one of three
main classes: “support”, “vertical”, and “sky”. Support sur-
faces are roughly parallel to the ground and could poten-
tially support a solid object. Examples include road sur-
faces, lawns, dirt paths, lakes, and table tops. Vertical sur-
faces are solid surfaces that are too steep to support an ob-
ject, such as walls, cliffs, the curb sides, people, trees, or
cows. The sky is simply the image region corresponding to
the open air and clouds.

3.2. Subclasses

Because the vertical class contains such a wide variety of
surfaces, we divide vertical surfaces further into the follow-
ing subclasses: planar surfaces facing to the “left”, “center”,
or “right” of the viewer, and non-planar surfaces that are ei-
ther “porous” or “solid”. Planar surfaces include building
walls, cliff faces, and other vertical surfaces that are roughly
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planar. Porous surfaces are those which do not have a solid
continuous surface. Tree leaves, shrubs, telephone wires,
and chain link fences are all examples of porous surfaces.
Solid surfaces are non-planar vertical surfaces that do have
a solid continuous surface, including automobiles, people,
beach balls, and tree trunks.

These subcategories are intended to provide a more de-
tailed labeling of the vertical class in a manner that will
be useful for scene understanding. For instance, consider
the task of navigation. Planar surfaces often make up the
boundaries of the traversable area of a scene. A vehicle
may be able to drive through porous objects, but avoidance
would be preferred. Solid objects are often not fastened to
the ground but require avoidance. The solid vertical sub-
class also contains many objects that would be of interest in
the object recognition task.

The blurred boundaries between the definitions of these
subclasses often makes (ground truth) labeling somewhat
subjective. For instance, how directly must a wall face the
viewer for it to be considered “center” instead of “left” or
“right”? Is the side of a small car planar? The side of an 18-
wheel truck? Is a large branch solid? What about a jumble
of twigs? These ambiguities are the inevitable consequence
of imposing a compact labeling on the entire visual world.
Most of the time, when a region could be conceivably la-
beled as either of two classes, the assigned label has little
practical importance, but the ambiguity does cause trouble
when quantitatively evaluating the performance of the auto-
matic system-assigned labels. In providing the ground truth,
we attempted to label each region into the most appropri-
ate class, while being as consistent as possible. The reader
should note, however, that some quantitative error (perhaps
up to 15% for the subclasses) is due to these ambiguities.

4. Cues for Labeling Surfaces

A patch in the image could theoretically be generated
by a surface of any orientation in the world. To determine
which orientation is mostlikely, we need to use all of the
available cues: material, location, texture gradients, shad-
ing, vanishing points, etc. In Table 1, we list the set of
statistics used for classification. Some of these statistics,
such as perspective cues, are only helpful when computed
over the appropriate spatial support (i.e., a region in a seg-
mentation), which is provided by our multiple segmentation
method (Section 5). The sundry and sometimes redundant
nature of these statistics reflects our approach: compute all
cues that might be useful and allow our classifier (described
in Section 6) to decide which to use and how to use them.

4.1. Location

It should come as no surprise that, for recovering the
rough 3D geometry of the scene, the 2D representation it-

self (position in the image) provides a strong cue. Figure 4
displays the likelihood of each geometric class given the x-
y position in the image. As one might expect, ground tends
to be low in the image, and sky tends to be high. The x-
position (or column) in the image tells little about the main
classes, but is helpful in distinguishing among some of the
subclasses. For instance, planes facing left tend to be on the
right side of the image, while planes facing right tend to be
positioned on the left side. The reason is simply that more
photographs are taken facing down a street or path than di-
rectly into the corner of a building.

In our representation, we normalize the pixel locations
by the width and height of the image. We then compute
the mean (set L1 in Table 1) and10th and90th percentile
(L2) of the x- and y-position of a segment in the image.
We additionally measure the number of superpixels (L5),
described in Section 5.1, and pixels (L6), normalized by
total image area, in each segment.

4.2. Color

By itself, color has little to do with 3D orientations or
geometry. Nevertheless, by modeling color, we can im-
plicitly identify materials and objects that correspond to
particular geometric classes, making color a powerful cue.
For instance, the sky is usually blue or white, and support
segments are often green (grass) or brown (dirt). In Fig-
ure 5, we plot the likelihoods for each of the geometric main
classes and subclasses given hue or saturation.

We represent color using two color spaces: RGB and
HSV (C1-C4). RGB allows the “blueness” or “greenness”
of a segment to be easily extracted, while HSV allows per-
ceptual color attributes such as hue and “grayness” to be
measured.

4.3. Texture

Similarly to color, texture provides a cue for the geomet-
ric class of a segment through its relationship to materials
and objects in the world. Texture also relates more directly
to the geometric class through properties of surfaces in per-
spective, such as that a vertical plane will tend to have more
vertically oriented textures than a horizontal plane.

To represent texture, we apply a subset of the filter bank
designed by Leung and Malik [29]. We generated the filters
using publicly available code with the following parame-
ters: 19x19 pixel support,

√
2 scale for oriented and blob

filters, and 6 orientations. In all, there are 6 edge, 6 bar, 1
Gaussian, and 2 Laplacian of Gaussian filters. Our repre-
sentation includes the absolute filter response (T1) of each
filter and the histogram (over pixels within a segment) of
maximum responses (T2).
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SURFACE CUES
Location and Shape
L1. Location: normalized x and y, mean
L2. Location: normalized x and y,10th and90th pctl
L3. Location: normalized y wrt estimated horizon,10th, 90th pctl
L4. Location: whether segment is above, below, or straddles estimated horizon
L5. Shape: number of superpixels in segment
L6. Shape: normalized area in image
Color
C1. RGB values: mean
C2. HSV values: C1 in HSV space
C3. Hue: histogram (5 bins)
C4. Saturation: histogram (3 bins)
Texture
T1. LM filters: mean absolute response (15 filters)
T2. LM filters: histogram of maximum responses (15 bins)
Perspective
P1.Long Lines: (number of line pixels)/sqrt(area)
P2.Long Lines: percent of nearly parallel pairs of lines
P3.Line Intersections: histogram over 8 orientations, entropy
P4.Line Intersections: percent right of image center
P5.Line Intersections: percent above image center
P6.Line Intersections: percent far from image center at 8 orientations
P7.Line Intersections: percent very far from image center at 8 orientations
P8.Vanishing Points: (num line pixels with vertical VP membership)/sqrt(area)
P9.Vanishing Points: (num line pixels with horizontal VP membership)/sqrt(area)
P10.Vanishing Points: percent of total line pixels with vertical VP membership
P11.Vanishing Points: x-pos of horizontal VP - segment center (0 if none)
P12.Vanishing Points: y-pos of highest/lowest vertical VP wrt segment center
P13.Vanishing Points: segment bounds wrt horizontal VP
P14.Gradient: x, y center of mass of gradient magnitude wrt segment center

Table 1. Statistics computed to represent superpixels (C1-C4,T1-T2,L1,L6) and segments (all). The boosted decision tree classifier selects
a discriminative subset of these features.

Support Vertical Sky Left Center Right Porous Solid
Figure 4. Likelihood (higher intensity is more likely) of each geometric class given location in the image. Location is highly discriminative
for the main classes. Porous surfaces(often vegetation) tends to form a canopy around the center of the image, while solid surfaces often
occur in the front-center of the image. The left/center/right likelihoods show the tendency to take photos directly facing walls or down
passages.

4.4. Perspective

Knowledge of the vanishing line of a plane completely
specifies its 3D orientation relative to the viewer [20], but
such information cannot easily be extracted from outdoor,
relatively unstructured images. Our representation contains

perspective information in two basic forms: a “soft” esti-
mate and an explicit estimate of vanishing points.

By computing statistics of straight lines (P1-P2) and
their intersections (P3-P7) in the image, our system gains
information about the vanishing points of a surface with-
out explicitly computing them. Our system finds long,
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Support Vertical Sky Left Center Right Porous Solid
Figure 5. Likelihood of each geometric class given hue and saturation. Each image shows the given hue and saturation, with the label
likelihood given by the intensity. Blue sky is easily distinguishable. More confusion exists between the support and vertical classes, though
natural tones of brown, green, and blue lend evidence for support. Gray (low saturation) is common in all main classes. Color is not very
discriminative among the subclasses, with the exception of porous which tends to be colors of vegetation.

straight edges in the image using the method of Kosecka
and Zhang [27]. The intersections of nearly parallel lines
(within π/8 radians) are radially binned, according to the
direction to the intersection point from the image center (8
orientations) and the distance from the image center (thresh-
olds of 1.0 and 3.5 times the image size).

We also found that computing a more explicit estimate of
the vanishing points can help in some cases. We compute
these vanishing points over the entire image (without regard
to any segmentation), using the EM approach described by
Kosecka and Zhang [27]. From this, we have a set of esti-
mated vanishing points and the probability that each line in
the image belongs to each vanishing point. If the expected
number of lines that form a vanishing point is less than 3,
we ignore that vanishing point. We then consider vanish-
ing points that occur very high or low (outside 2.5 times
the image height) in the image plane to be “vertical vanish-
ing points”, which are likely to lie on a vertical plane. We
consider vanishing points that lie close to the image center
(within 1.25 times the image height) to be “horizontal van-
ishing points”, which are likely to lie on a plane parallel to
the ground.

For a given segment, we then compute various statistics
relating to these vanishing points. For instance, the num-
ber of pixels that a segment has that contribute to a vertical
or horizontal vanishing point (P8-P10) may help determine
whether the surface is a support surface or vertical. Like-
wise, the position of the highest or lowest vanishing point
(P12) formed by lines in the segment may help determine
the rough surface orientation. The position of the horizon-
tal vanishing point with respect to the segment center (P11,
P13) provides evidence of whether the surface is facing to
the left, center, or right of the viewer.

The texture gradient can also provide orientation cues,
even for natural surfaces without parallel lines. We rep-
resent texture gradient information (P14) by computing the
difference a segment’s center of mass with its center of mass
of gradient magnitude.

We also estimate the horizon position in the image based
on the vanishing points that lie relatively close to the image
center (within 75% of the image height). If more than one

such vanishing point exists, a weighted average is taken of
their y-positions (weighted by the inverse variance of the
estimated y-position of the vanishing points). Feature set
L3-L4 relates the coordinates of the segment relative to the
estimated horizon, which is often more relevant than the
absolute image coordinates (though we must note that the
horizon estimate is often quite poor).

Note that, though little theory or experimentation sup-
ports the exact parameter values given in this subsection,
our system seems to be robust to reasonable variations.

5. Spatial Support

Many of the cues described above can be extracted only
when something is known about the structure of the scene.
For instance, knowledge about the intersection of nearly
parallel lines in the image is often extremely useful for de-
termining the 3D orientation, but only when we know that
the lines belong to the same planar surface (e.g. the face of
a building or the ground). Our solution is to slowly build
structural knowledge of the image: from pixels to superpix-
els to multiple segmentations (see Figure 6).

5.1. Superpixels

Initially, an image is represented simply by a 2D array
of RGB pixels. Without any knowledge of how those pixels
should be grouped, we can compute only simple cues, such
as pixel colors and filter responses. Our first step is to form
superpixels from those raw pixel intensities. Superpixels
correspond to small, nearly-uniform regions in the image
and have been found useful by other computer vision and
graphics researchers [50, 40, 30]. The use of superpixels
improves the computational efficiency of our algorithm and
allows slightly more complex statistics to be computed for
enhancing our knowledge of the image structure.

Our implementation uses the graph-based oversegmenta-
tion technique of Felzenszwalb and Huttenlocher [13]. We
use the code publicly released by those authors with the
parametersσ = 0.5, k = 100, min = 100. Beginning
from single-pixel regions, this method merges two regions
if the minimum intensity difference across the boundary is
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Input Superpixels Multiple Segmentations Surface Layout
Figure 6. Surface layout estimation algorithm. From the input image, we create an oversegmentation into superpixels. We then group those
superpixels into several different segmentations. The final surface layout combines estimates from all of the segmentations.

greater than the maximum difference within the regions,
with a bias towards larger regions. The advantage of this
technique is that it can often group large homogeneous re-
gions of the image together while dividing heterogeneous
regions into many smaller superpixels. This often allows
reasonable oversegmentations with fewer superpixels (typ-
ically around 500 for an 800x600 image). The superpixels,
however, tend to be highly irregular in size and shape which
could be disadvantageous for some applications. Alterna-
tive over-segmentation methods include the normalized cuts
based method evaluated by Ren and Malik [40] and the sim-
ple watershed algorithm, which was used effectively by Li
et al.[30]. These methods produce more regular superpixels
but require much more processing time or larger numbers of
superpixels.

5.2. Multiple Segmentations

Our experiments (Section 8.2) show that, while the in-
creased spatial support of superpixels provides much better
classification performance than for pixels, larger regions are
required to effectively use the more complex cues, such as
perspective. How can we find such regions? One possibil-
ity is to use a standard segmentation algorithm (e.g. [46]) to
partition the image into a small number of homogeneous re-
gions. However, since the cues used in image segmentation
are themselves very basic and local, there is little chance of
reliably obtaining regions that correspond to entire surfaces
in the scene.

Our approach is to computemultiple segmentations
based on simple cues and then use the increased spatial
support provided by each segment to better evaluate its
quality. Ideally, we would evaluate all possible segmenta-
tions of an image to ensure that we find the best one. To
make our algorithm tractable, we sample a small number
of segmentations that are representative of the entire
distribution. We compute the segmentations using a simple
method (described in Figure 8) that groups superpixels
into larger continuous segments. Our method is based on
pairwise same-label likelihoods, which are learned from
training images. A diverse sampling of segmentations

is produced by varying the number of segmentsns and
using a random initialization. In our implementation, we
generate 15 segmentations of the input image, withns ∈
{5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100}).
In Figure 7, we show multiple segmentation examples for
two images.

Our multiple segmentation method has advantages of
being task-based, efficient, and empirically able to gener-
ate a reasonable sampling of segmentations. Other meth-
ods, however, are also possible. For instance, Russellet
al. [42] generate multiple segmentations using Normalized
Cuts [46] while varying the size of the image and the num-
ber of segments. Other possibilities include varying the
cues used for the segmentation [39] or generating a hier-
archical segmentation [1, 45, 2].

5.3. Labeling

Each segmentation provides a different view of the im-
age. To arrive at a final conclusion, we need to evaluate the
likelihood that each segment is good orhomogeneousand
the likelihood of each possible label. We can then combine
estimates produced by different segmentations in a prob-
abilistic fashion. A segment is homogeneous if all con-
tained superpixels have the same label. We estimate the
homogeneity likelihoodP(sj |I) based on all of the cues
listed in Table 1 using boosted decision trees1. Homogene-
ity is very difficult to estimate from image data, however,
and the learned estimate depends heavily on the number
of superpixels in a segment. If we know that a segment
is homogeneous, we can estimate the likelihood of its label
P(ỹj |sj , I).

To get the label likelihood for theith superpixel, we sim-
ply marginalize over the unique sampled segments{sj} that

1In an attempt to create a better homogeneity estimator, we also tried
using statistics of individual superpixel likelihood estimates and same-
label likelihoods within a segment. The classifier learned from these statis-
tics, however, performed the same as the classifier using the original cues,
both in terms of its ability to classify homogeneous segments and of the
overall accuracy of the system.
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Input Superpixels 5 Segments 15 Segments 25 Segments

35 Segments 45 Segments 60 Segments 80 Segments 100 Segments

Input Superpixels 5 Segments 15 Segments 25 Segments

35 Segments 45 Segments 60 Segments 80 Segments 100 Segments
Figure 7. Examples of multiple segmentations.

contain the superpixel:

P(yi = k|I) ∝
∑
sj3i

P(sj |I)P(ỹj = k|sj , I) (1)

Here, yi is the superpixel label and̃yj is the segment la-
bel. Since the sum is over segments containing theith su-
perpixel, rather than the joint space of segmentations, we
believe that a small number of segmentations will provide a
sufficient sample. Our experiments (Section 8.5) appear to
support this conclusion.

The resulting superpixel label likelihoods can be thresh-
olded to get a max-margin estimate of the superpixel labels
(as we do in most of our evaluation) or used in a Markov
random field framework to produce the jointly most proba-
ble labels. In Section 9.1, we evaluate a simple implementa-
tion of the latter, forming unary potentials from the the label
likelihood and pairwise potentials from the same-label like-
lihoods and maximizing using graph cuts.

6. Classifiers

In this paper, we use boosted decision trees for each clas-
sifier, using the logistic regression version of Adaboost [8,

14]. Decision trees make good weak learners, since they
provide automatic feature selection and limited modeling of
the joint statistics of data. Each decision tree provides a par-
titioning of the data and outputs a confidence-weighted de-
cision which is the class-conditional log-likelihood ratio for
the current weighted distribution. The logistic regression
version of Adaboost differs from the original confidence-
weighted version [44] by only a slight change in the weight
update rule, but it results in confidence outputs that tend to
be well-calibrated probabilities (after applying the simple
sigmoid conversion to the log-ratio output).

The classifier training algorithm is given in Figure 9. For
the same-label classifier, the initial weighted distribution is
uniform. For the segment classifiers, the initial distribution
is proportional to the percentage of image area spanned by
each segment, reflecting that correct classification of large
segments is more important than of small segments. When
computing the log-likelihood ratio, we add a small constant
( 1
2m for m data samples) to the numerator and denominator

which helps to prevent overfitting and to stabilize the learn-
ing process.

The same-label classifier outputs an estimate ofP(yi =

9



SEGMENTATION

Input:
• ns: number of segments
• pij = P(yi = yj |I): probability that adjacent superpixelsri andrj have

same label, given the image

Initialize:
1. Assignns random superpixels to segments1..ns

2. While any unassigned superpixels remain
For each unassignedmi:

For each neighboring segmentk:
Assignmi = k with probability

∏
j(p

mj=k
ij (1− pij)mj 6=k)

Minimize energy:E(m) = −
∑

ij log pmi=mj

ij (1− pij)mi 6=mj

Until local minimum is reached forE(m)
For eachmi: assignmi to minimizeE(m)

Output:
• m1..mnr ∈ {1..ns}: assignment of superpixels to continuous segments

Figure8. Pseudocode for segmentation. The product in the initialization is taken over all adjacent superpixels tori that have been assigned.
The sum in the energy term is over all pairs of adjacent superpixels. During the energy minimization, assignment ofmi is constrained to
preserve segment continuity.

TRAINING BOOSTED DECISION TREES

Input:
• D1..Dm: training data
• w1,1..w1,m: initial weights
• y1..ym ∈ {−1, 1}: labels
• nn: number of nodes per decision tree
• nt: number of weak learner decision trees

For t = 1..nt:
1. Learnnn-node decision treeTt based on weighted distributionwt

2. Assign to each nodeTt,k: ft,k = 1
2 log

∑
i:yi=1,Di∈Tt,k

wt,i∑
i:yi=−1,Di∈Tt,k

wt,i

3. Updateweights:wt+1,i = 1

1+exp(yi

∑t

t′=1
ft′,k

t′
)

with kt′ : Di ∈ Tt′,kt′

4. Normalize weights so that
∑

i wt+1,i = 1

Output:
• T1..Tnt : decision trees
• f1,1..fnt,nn : weighted log-ratio for each node of each tree

Figure9. Boosted decision tree algorithm using logistic regression version of Adaboost.

yj |I) for the adjacent superpixelsi and j and image data
I. The segment homogeneity classifier outputsP(sk|I) for
the kth segment. We train separate classifiers to distin-
guish among the main classes and the subclasses of verti-
cal. These are each learned in a one vs. all fashion. For in-
stance, to distinguish among the main classes, we train three
classifiers that estimate the probability of a segment being

“support”, “vertical”, and “sky”. These are then normalized
to ensure that the estimated probabilities sum to one. Sim-
ilarly, the subclassifier outputs probabilistic estimates for
each subclass, given that the main class is “vertical”.
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Support Vertical Sky
31.4% 48.0% 20.6%

Left Center Right Porous Solid
5.0% 10.5% 6.3% 15.7% 10.5%

Table 2. Average image area for each main class and subclass of
vertical.

7. Implementation

For training and testing, we gathered 300 outdoor im-
ages using Google image search for words such as “alley”,
“beach”, “buildings”, “city”, “cliff”, and “college”. In col-
lecting the images, we removed aerial photos and those with
extreme viewpoints (i.e., we required that the horizon line
be within the image). The resulting images offer a wide va-
riety of environments (forests, cities, roads, beaches, lakes,
etc.) and conditions (snowy, sunny, cloudy, twilight). The
image sizes range from about 300x240 to 1024x768, with
varying aspects.

To provide ground truth, we first oversegmented the im-
ages into superpixels (described in Section 5.1). These su-
perpixels, typically numbering about 500 per image, pro-
vide our atomic representation, and each was manually as-
signed a ground truth label by drawing polygons around
regions and clicking individual superpixels. In all, about
150,000 superpixels were labeled in a time-consuming
process. Labeling superpixels, instead of pixels, provides
a very accurate, complete ground truth, but sometimes a su-
perpixel will include more than one geometric class. On
those rare occasions, we assign the most appropriate label.
Table 2 shows the average image area of each main class
and subclass in our data set.

Training and testing is performed with cross-validation.
Our training algorithm is outlined in Figure 10, and our in-
ference algorithm in Figure 11. We randomly split the set
of 300 images into six subsets of 50 images each. The first
subset is used to train a same-label classifier that estimates
the likelihood that two superpixels have the same label. The
remaining subsets are used for training and testing in five-
fold cross-validation. Based on the same-label classifier,
multiple segmentations are produced for each image (as in
Section 5.2). Then, in each fold, four subsets are used to
train the geometry and homogeneity classifiers, and the re-
maining subset is used for testing. Since we use the cross-
validation to evaluate our algorithm, we do not use it to se-
lect parameters.

The same-label classifier is based on cue sets L1, L6,
C1-C4, and T1-T2 in Table 1. The following statistics are
computed over pairs of superpixels: the absolute differences
of the mean RGB, HSV, filter response, and pixel loca-
tion values; the symmetrized Kullback-Leibler divergence
of the hue, saturation, and texture histograms; the ratio of

the areas; the fraction of the boundary length divided by
the perimeter of the smaller superpixel; and the straightness
(length divided by endpoint distance) of the boundary.

To train the segment classifiers, we need to assign ground
truth to the automatically created segments. If nearly all
(at least 95% by area) of the superpixels within a seg-
ment have the same ground truth label, the segment is as-
signed that same label. Otherwise, the segment is labeled as
“mixed”. The label classifier is then trained to distinguish
among single-label segments, and the homogeneity classi-
fier is trained to determine whether a segment has a single
label or is mixed. The segment classifiers use all of the
listed cues. Many of these cues can be quickly computed
for the segments, since the superpixel cues provide suffi-
cient statistics. In fact, all of the location/shape, color, and
texture cues, with the exception of L2 and L3, can be com-
puted for segments by taking a weighted (by area) mean of
the superpixel cue values.

In our implementation, each strong classifier consists of
20 decision trees that each have 8 leaf nodes. Decision
trees are learned using a weighted version of the MATLAB
treefit function. We first grow the tree to four times the
number of nodes desired and then prune it using the MAT-
LAB treeprune function.

Our current implementation differs from that of our pre-
vious work [22] in several ways. We replaced the texture
filters, added texture histograms of the max response (T2),
added explicit vanishing point cues (P8-P13), and restricted
segmentations to continuous segments. The additional van-
ishing point cues improved subclass accuracy by about 4%.
The change in texture cues accounts for most of the remain-
ing improvement (roughly 2% and 5% for main and sub-
classes). The segmentation into continuous segments re-
sults in fewer scattered errors.

8. Experiments

The purpose of our experiments is to demonstrate the
effectiveness of our proposed multiple segmentation algo-
rithm and to gain an understanding of what makes it effec-
tive. Our analysis includes comparison of varying levels
of spatial support, the impact of different types of cues on
accuracy, and choices of parameters for segmentation and
classification.

In each experiment, we report the average accuracy of
classification among the main classes (“support”, “verti-
cal”, “sky”) and among the subclasses of vertical (“left”,
“center”, “right”, “porous”, “solid”). The most likely label
is assigned to each superpixel, and the average accuracy is
weighted by the area of the image spanned by each super-
pixel. For instance, an accuracy of 85% means that, on av-
erage, 85% of the pixels in an image are correctly labeled.
Subclass accuracy is evaluated independently of the main
class accuracy. For example, if a “porous”, “vertical” super-
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TRAINING OVERVIEW

1. For each training image:
(a) Compute superpixels
(b) Compute superpixel cues (Table 1)

2. Train same-label classifier (Section 6)
3. For each training image:

(a) Produce multiple segmentations for varyingns (Section 5)
(b) Label each segment according to ground truth
(c) Compute cues in each segment (Table 1)

4. Train segment label classifier and homogeneity classifier (Section 6)

Figure10. Outline of training procedure.

SURFACE LAYOUT ESTIMATION

1. Image→ superpixels via over-segmentation
2. Superpixels→ multiple segmentations

(a) For each superpixel: compute cues (Table 1)
(b) For each pair of adjacent superpixels: compute same-label likelihoodP (yi = yj |I)
(c) Create multiple segmentations for varyingns (Section 5)

3. Multiple segmentations→ superpixel labels
(a) For each segment:

i. Compute cues (Table 1)
ii. For each possible label (main classes and subclasses): compute label likelihoodP (ỹj |I, sj)

iii. Compute homogeneity likelihoodP (sj |I)
(b) Compute label confidences for each superpixel:P (yi|I) ∝

∑
sj3i

P (ỹj |I, sj)P (sj |I)

Figure11. Outline of surface layout estimation algorithm.

pixel is mislabeled as ground, but the most likely subclass
given vertical is porous, that superpixel is counted as incor-
rect for the main class accuracy but correct for the subclass
accuracy.

Overall (Section 8.1), the performance of our method is
quite good, both quantitatively and qualitatively. Key ingre-
dients to its success are the robust spatial support (8.2) pro-
vided by multiple segmentations and the inclusion of many
types of cues (8.3). The spatial support plays an especially
important role in the subclassification (e.g., determining the
whether a plane is facing the right or the left), which greatly
benefits from perspective cues. Fortunately, the algorithm
is not highly sensitive to implementation details such as the
number of segmentations (8.5) and classification parame-
ters (8.6). Our method also easily extends to indoor images
(8.7), achieving excellent accuracy despite a small training
set.

8.1. Overall

In Table 3, we report the confusion matrices for our
multiple segmentation method. The matrices are row-
normalized. The non-normalized matrices can be computed
using the class priors (Table 2).

For some applications, only the accuracy of the most

Main Class
Support Vertical Sky

Support 0.84 0.15 0.00
Vertical 0.09 0.90 0.02
Sky 0.00 0.10 0.90

Vertical Subclass
Left Center Right Porous Solid

Left 0.37 0.32 0.08 0.09 0.13
Center 0.05 0.56 0.12 0.16 0.12
Right 0.02 0.28 0.47 0.13 0.10
Porous 0.01 0.07 0.03 0.84 0.06
Solid 0.04 0.20 0.04 0.17 0.55

Table 3. Confusion matrices (row-normalized) for multiple seg-
mentation method.

likely label is important, but for others the confidence in
that label is helpful. In Figure 12, we plot the precision-
recall curves for the main and subclasses.

In Figures 16 and 17, we show qualitative results from
our multiple segmentation method, and, in Figure 18, we
display results as confidence images for each of the sur-
face labels. We demonstrate the generality of our geomet-
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Figure 12. Precision-recall curves. Precision is the percent of declared labels (at some confidence threshold) that are true, and recall is the
percent of true labels that are declared. The curve is generated by varying the confidence threshold.

Method Main Sub
Pixels 82.1 44.3
Superpixels 86.2 53.5
SingleSegmentation 86.2 56.6
Multiple Segmentations 88.1 61.5
GroundTruth Segmentation 95.1 71.5

Table 4. Average accuracy (percent of correctly labeled image pix-
els) of methods using varying levels of spatial support.

ric models in Figure 20, where we label paintings, despite
training on only real images.

8.2. Spatial Support

In Table 4, we report the average accuracy for increas-
ing levels of spatial support, from pixels to multiple seg-
mentations. When using only individual pixels as spatial
support, based on color, filter responses, and position, the
classification accuracies are 82.1% for the main classes and
44.3% for the subclasses. When using superpixels for spa-
tial support, based on the simpler superpixel cues (L1, L6,
C1-C4, T1-T2 in Table 1), the accuracies improve substan-
tially to 86.0% and 52.9%, respectively. When using all
of the cues, including perspective cues, however, accuracy
improves only slightly to 86.2% and 53.5%. Thus, while
superpixels allow more useful cues than pixels, such as his-
tograms of color and texture, the perspective cues still can-
not be utilized effectively without better spatial support.

A single segmentation provides better spatial support
than superpixels but is unreliable and may result in a poor
solution. Segmenting images into 100 segments each (the
single value that gives the highest average accuracy in
our experiments) slightly improves the subclass accuracies

(over superpixels) to 56.6%. Our multiple segmentation
method provides good spatial support while avoiding com-
mitment to any particular segmentation, resulting in much
better performance (88.1% and 61.5%). As can be seen,
better spatial support results in higher accuracy, especially
for the subclasses which rely on the more complex cues.

We also performed an experiment based on “perfect”
segmentations, which were created by performing con-
nected components on the ground truth labels. When
training and testing on these ground truth segmentations,
our algorithm achieves much higher accuracy (95.1% and
71.5%). This result demonstrates the value of spatial sup-
port for classification and indicates the potential improve-
ment that could result from an improved segmentation
process.

8.3. Analysis of Cues

We wish to evaluate the effectiveness of our four types
of cues: location and shape, color, texture, and perspective
(see Table 1). To do this, we train classifiers and compute
average accuracies over our test images in eight trials: using
each type individually and using all cues except one type.
In these experiments, we applied the multiple segmentation
method, using the same segmentations as were used to re-
port accuracy on the multiple segmentations. Thus, the seg-
mentations themselves are based on the standard set of cues,
and the results in this experiment reflect how effectively the
segments are classified. The results are listed in Table 5.
In Figure 19, we display qualitative results, comparing the
individual contribution of each cue and the overall result.

The simple location and shape cues prove to be surpris-
ingly effective for the main classes but ineffective for dis-
tinguishing among the vertical subclasses. Texture cues are
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Cues Main Sub
All 88.1 61.5
Location 82.9 42.1
Color 72.2 43.1
Texture 79.9 54.6
Perspective 68.3 51.8
No Location 84.4 59.5
No Color 87.0 60.4
No Texture 86.7 58.2
No Perspective 88.1 56.6

Table 5. Average accuracy under different sets of cues.

highly effective for both main classes and subclasses. Per-
spective seems to be highly effective for subclassification
but to offer little benefit to main classification. Perhaps tex-
ture implicitly provides the useful perspective information
for distinguishing between “support” and “vertical”, or per-
haps this is due to the low number of “manhattan” scenes in
the database for which the perspective cues would be most
valuable. From this table, we can also conclude that the
cues have high interdependencies through the labels. Each
cue by itself seems remarkably effective at discriminating
among the classes (especially for the main classes), but re-
moving a single cue never affects accuracy by more than
a few percent. The effect on accuracy would be larger (as
shown in our previous work [22]) if the segmentations were
also recomputed with subsets of the cues. For instance,
color plays a stronger role in the segmentation than in the
classification.

8.4. Sufficiency of Data

If we had more training images, would we be able to train
more accurate classifiers? To find out, we performed an
experiment, re-training our segment homogeneity and label
classifiers on between 5 and 200 images. We plot the results
in Figure 13, providing evidence that much larger training
sets would probably improve accuracy, especially for the
subclasses.

8.5. Analysis of Segmentations

We first evaluate the effect of the number of segments
on accuracy, for the single segmentation method. We plot
the results of our experiment in Figure 14(left). The main
class accuracy peaks at 100 segments per segmentation and
remains unchanged for higher numbers. The subclass ac-
curacy also peaks at 100 segments per segmentation but
declines slightly as the number of segments increases fur-
ther. This may be due to the importance of the perspective
cues (which require good spatial support) to the subclassi-
fier. These results illustrate the trade-off between bias and
spatial support, showing that in the case of a single segmen-
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Figure13. Accuracy while varying the number of training images.
According to these trends, much larger training sets would proba-
bly result in significantly higher accuracy, especially for the sub-
classes.

tation, low bias (an oversegmentation) is preferred.
We also measure the effect of the number of segmenta-

tions on accuracy in our multiple segmentation framework.
Our implementation uses 15 segmentations. In Figure 14
(right), we compare results while varying the number of
segmentations from one to sixty. In these experiments, we
used the same classifiers trained under our reported results
for multiple segmentations but generated new sets of seg-
mentations for testing. A large improvement is observed for
the subclassifier, with a smaller improvement for the main
classifier. This is in accordance with the results in Table 4,
which shows that segmentation plays a more critical role in
the subclassification.

8.6. Classification Parameters

Boosted decision trees sequentially carve the input space
into a set of hypercubes and estimate the class-conditional
likelihood ratio for each. The granularity of the hypercubes
can be made arbitrarily fine (as the number of weak learners
increases), but the estimations of the likelihood ratios (and
the assigned classes) for datapoints falling within each cube
are constrained by the type of decision tree. For instance,
if the decision tree has only two leaf nodes (as is common
practice in computer vision algorithms), the strong classi-
fier is based on a sum of functions that each take only one
attribute as input, as in linear logistic regression. If the deci-
sion tree can be arbitrarily large, however, any set of unique
datapoints can be arbitrarily labeled.

Thus, when using boosted decision trees, there are two
important parameters to consider: the number of weak
learner trees and, more importantly, the number of nodes
per tree. Generally, increasing the number of trees will
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Figure 14. Analysis of segmentation parameters. On the left, classification is performed for single segmentations into varying numbers
of segments (“sp” is the segmentation into superpixels). Peak accuracy is at 100 segments, with larger numbers of segments degrading
the subclass accuracy slightly. On the right, classification is performed using the multiple segmentation method for varying numbers of
segmentations. Although eight segmentations outperforms single segmentations by about 2% and 5% for main and subclasses, increasing
the number of segmentations further produces no significant change in accuracy.

not harm accuracy, since Adaboost is robust to overfitting.
Choosing the number of nodes per tree, however, involves
the complexity trade-off between the power of the classi-
fier and its tendency to overfit. We performed experiments,
comparing the average accuracy as the number of decision
trees varied for eight-node trees (eight leaf nodes) and while
varying the number of nodes per tree. When changing the
number of nodes per tree, we keep fixed the number of de-
cisions so that there are 160 leaf nodes for each strong clas-
sifier (80 2-node trees, 40 4-node trees, 20 8-node trees, 10
16-node trees, 5 32-node trees). See Figure 15 for the re-
sults.

8.7. Indoor Scenes

To demonstrate that our approach can also be effectively
applied to indoor images, we annotated ground truth geom-
etry labels for the Stanford dataset of 92 indoor images used
to test the indoor 3D reconstruction method of Delage, Lee,
and Ng [10]. For simplicity, we used the same geometric
classes as for outdoors, except that the “sky” class is rede-
fined as the ceiling. We did not change any parameters in
our system and re-used the same-label classifier trained on
outdoor images. We then performed two experiments: the
first measuring the accuracy when all classifiers are trained
on outdoor images, and the second when homogeneity and
label classifiers are trained on indoor images in five-fold
cross-validation.

When trained on outdoor images, the average classifi-
cation accuracy of indoor images is 76.8% for the main
classes and 44.9% for the subclasses. After re-training the
segment classifiers on indoor images, the test accuracy im-

proves to 93.0% and 76.3%, respectively. Qualitative results
are shown in Figure 21.

9. Alternative Frameworks

Since our method is the first to treat surface estimation
as a recognition problem, it is worth checking that other
reasonable approaches will not greatly outperform our own.
Here, we explore two alternative frameworks for recovering
surface layout: a simple random field framework in which
unary and pairwise potentials are defined over superpixels,
and a simulated annealing approach that searches for the
most likely segmentation and labeling. Our results from the
random field framework confirm that our multiple segmen-
tations provide more than what can be modeled by simple
pairwise interactions. Our results on the simulated anneal-
ing framework highlight the difficulty of searching for a sin-
gle good segmentation, reaffirming our own approach.

9.1. Random Field Framework

In image labeling problems, conditional random
fields [28] (CRFs) are widely used to model the conditional
distributionP(y|I) of the labels given the image data. Us-
ing pairwise cliques, the log of of the conditional distribu-
tion can be written as a sum of unary and pairwise potential
terms:

log P(y|I) =
∑

i

f1(yi, I) +
∑
ij

f2(yi, yj , I)− log Z (2)

where the second sum is over all adjacent pairs of labels and
Z is the partition function. We define the labels to be over
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Figure 15. Analysis of classification parameters. The results are fairly robust to the classification parameters. When boosting eight-node
decision trees, having ten or more weak learners gives the best results. When keeping the total number of decisions constant (160 nodes
total), between trees of between 4 and 16 nodes produce the best results.

β 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Main 86.2 86.4 86.2 86.1 85.7 85.4 84.6
Sub 53.5 54.4 54.8 54.1 53.7 52.7 52.8

Table 6. Average accuracies for varying levels ofβ using a condi-
tional random field.

the superpixel and set the unary term to be the superpixel
label log likelihoodlog P(yi|I). We set the pairwise term to
be proportional to the same-label log likelihood.

We can rewrite this as an energy function:

E(y1..yn) =
∑

i

Ei(yi) +
∑
ij

Eij(yi, yj) (3)

Thefirst term penalizes lack of confidence in the superpixel
label: Ei(yi) = − log P(yi|I). The second term penalizes
discontinuity between neighboring labels. DenotingP(yi =
yj |I) aspij , we setEij(yi = yj) = 0 andEij(yi 6= yj) =
β(log pij − log(1− pij)). By forcingEij(yi 6= yj) >= 0,
we can find a good local minimum of this energy using the
alpha-expansion graph cuts algorithm [6]. The parameter
β controls the relative strength of the pairwise interaction
term.

We trained the superpixel label and pairwise likeli-
hood functions as described for the multiple segmentation
method. In Table 6, we show that slight gains in subclass
accuracy are possible, though the main class accuracy is not
significantly improved.

The unary potentials could also be created from the mul-
tiple segmentation label estimates. In our experiments,
however, this does not improve either main class or sub-
class accuracy, probably because the same-label likelihoods

already impact the estimate through the segmentations. By
modeling other kinds of interactions, such as positional re-
lations of labels, the conditional random field may be used
to improve the results from multiple segmentations.

9.2. Simulated Annealing

In our multiple segmentation framework, we indepen-
dently generate the segmentations and then marginalize
over them. But what if we search for the segmentation that
gives us the highest confidence labeling and use those la-
bels? To find out, we tried a simulated annealing approach
similar to that of Barbu and Zhu [3].

We obtain our initial segmentation by estimating the la-
bel likelihoods for each superpixel and performing con-
nected components after coloring with the most likely la-
bels. Training and testing a segment classifier on this initial
segmentation yields an average accuracy of 86.5% for the
main classes and 55.2% for the subclasses. For each move,
we select a random segment. We then merge the segment
with an adjacent segment or split the segment in two, us-
ing the algorithm given in Figure 8. If split, one part of the
segment either becomes a new segment or is attached to a
neighboring segment.

Our energy function is based on the estimated accuracy
of the main class labeling given the current segmentation.
To estimate the accuracy, we learn a regression tree (us-
ing MATLAB’s treefit) that estimates the percentage of
pixels within a segment that have the majority label, based
on the set of cues in Table 1. We also learn a classifier that
outputs the likelihood of the majority label (even if the seg-
ment contains multiple types of surfaces). The energy is the
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Input Ground Truth Labels Input Ground Truth Labels
Figure 16. Results from multiple segmentations method. This figure displays an evenly-spaced sample of the best two-thirds of all of
our results, sorted by main class accuracy from highest (upper-left) to lowest (lower-right). See Figure 2 for explanation of colors and
markings. Brighter colors indicate higher levels of confidence for the main class labels.
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Input Ground Truth Labels Input Ground Truth Labels
Figure 17. Continued results from multiple segmentations method. This figure displays an evenly-spaced sample of the worst third of all
of our results, sorted by main class accuracy from highest (upper-left) to lowest (lower-right).

defined as

E(s; I) = − log
∑

j

aj max P(ỹj |sj , I)r(ỹj , sj |I) (4)

whereaj is the (normalized) area of the segmentsj , ỹj is
its label, andr(ỹj , sj |I) is the regression tree estimate. Each
move is accepted with probabilityexp(−∆E

Tm
) whereTm is

thetemperature at the current iteration.
We used a low initial temperature (T0 set as one per-

cent of initial energy) and a fast cooling schedule (Tm+1 =
0.95 ∗ Tm after ns proposals, wherens is the number of
segments at the beginning of the iteration). Even so, the
simulated annealing took about 26 hours to test the 250 im-
ages. On average, the energy at the final iteration was about
40% of the initial energy.

The result of the simulated annealing is an average accu-
racy of 85.9% for the main classes and 61.6% for the sub-
classes. If, instead of using only the final segmentation, we
use an average over all of the segments produced during the
simulated annealing (similarly to the multiple segmentation
algorithm), the main class accuracy is 85.3% and the sub-
class accuracy is 66.9%.

The challenge of the simulated annealing approach is in
correctly estimating the majority of the label and the per-
centage of pixels in the segment that have the majority label.
This is much more difficult to estimate than the likelihood
that a segment is homogeneous or the label likelihood of a
homogeneous segment.

10. Applications

We believe that our surface layout representation has a
wide variety of applications, including automatic single-
view reconstruction, object detection, and vision-based nav-
igation. In [21], we show that our main surface labels and a
horizon estimate are sufficient to reconstruct coarse, scaled
3D models of many outdoor scenes. By fitting the ground-
vertical intersection in the image, we are able to “pop up”
the vertical surfaces from the ground. Figure 22 shows the
Merton College image from [31] and two novel views from
a texture-mapped 3D model automatically generated by our
system. See [21] for additional results and details on how
to construct these models.

Most objects, such as cars and people, are roughly verti-
cal surfaces that are supported by the ground. Thus, an esti-
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Input Labels Support Vertical Sky

Left Center Right Porous Solid

Input Labels Support Vertical Sky

Left Center Right Porous Solid
Figure 18. Results with confidence images for multiple segmentations method. The confidence image shows the estimated probabilities
over the image for the given label.

Input Location Color Texture Perspective All Cues
Figure 19. Results when performing classification based on each cue separately and using all cues. In each case, the same multiple
segmentations are used (which are based on location, color, and texture), and those segments are analyzed with the given type of cues.
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Input Labels Input Labels Input Labels
Figure 20. Results on paintings of outdoor scenes. Although the system is trained only on real images, it can often generalize to very
different settings.

Input Ground Truth Labels Input Ground Truth Labels
Figure 21. Results on indoor scenes.

mate of the surface layouts is very helpful for finding such
objects. In [23], we show that by simultaneously estimating
surfaces, camera viewpoint, and object positions and sizes,
we achieve much higher detection accuracy than with lo-
cal detectors alone (and often recover the camera viewpoint
very accurately). We show two examples of improvement
in Figure 23.

Lastly, we demonstrate an application to navigation. In
Figure 24, we show images taken from cameras mounted on
a vehicle, the estimated surface layouts, and estimated con-
tours of “safely navigable” terrain. In this simple demon-
stration, we consider support surfaces to be safe, and our
contours are simply the lines for which the confidence in
support is equal to 0.75 (green), 0.5 (blue), and 0.25 (red).
A robot trying to decide where to explore could consider the
area under the green line to be safe, between the green and
the blue to be probably safe, between the blue and the red to
be probably unsafe, and above the red to be unsafe. Thus,
by using the confidences, rather than relying on the accu-
racy of the most likely labels, a robot can make a reasonable
plan for exploration and traversal, as further demonstrated
in [34].

11. Discussion

By posing surface estimation as a recognition problem,
we are able to recover the coarse surface layout in a wide
variety of outdoor scenes. Our approach has the advantages
of simplicity and robustness, being able to generalize even
to paintings and indoor images. One important aspect of
our approach is the use of a wide variety of image cues in-
cluding position, color, texture, and perspective. Different
cues provide different types of information about a region,
and, when used together, they are quite powerful. The idea
of multiple segmentations is also crucial to the success of
our algorithm, especially for distinguishing among the sub-
classes. Multiple segmentations acquire the spatial support
necessary for complex cues while avoiding the risky com-
mitment to a single segmentation.

We see three important avenues for improvement. First,
the surface layout estimation could benefit from additional
image cues, more accurate segmentations, and models of
label relationships. For instance, shadows and reflections,
which now tend to confound our algorithm could be used
as evidence to help it. Improved grouping or segmenta-
tion algorithms would provide reliable segmentations into
fewer segments, allowing better use of complex cues and
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Input Labels Novel View Novel View
Figure 22. Example of automatic 3D reconstruction based on surface layout (from [21]). Original image used by Liebowitzet al. [31] and
two novel views from the scaled 3D model generated by our system.

(a)Local Detection (a) Full Model Detection (b) Local Detection (b) Full Model Detection
Figure 23. Example of object detection application (from [23]). Detection with surface layout and viewpoint estimation performs much
better than purely local detection. The blue line shows the horizon estimate (always 0.5 initially). The boxes show detection estimates
(green=true car, cyan=false car, red=true ped, yellow=false ped), with the solid lines being high confidence detections and the dotted lines
being lower confidence detections.

less error due to incorrect segmentations. Also, label rela-
tionships, such as such as relative position (the sky is above
the ground) and boundaries (e.g. edge junctions), could be
used to improve results further.

Second, a more complete notion of surface layout is re-
quired. As Gibson says, spatial perception is nothing but
“edge and surface”, but we have only surface orientation.
We have no knowledge of the occluding contours and, thus,
cannot determine whether neighboring regions in the image
are physically connected. With such knowledge, we could
separate the person from the row of cars behind him and
determine the rough layout of objects in cluttered scenes.

Finally, we need to use our information about the
surfaces and space of the scene in conjunction with other
types of scene information. Surfaces, boundaries, and
objects all live and interact in the same visual world that
reflects our highly complex yet structured physical world.
Analysis of the individual constituents of the scene can
only take us so far. To truly understand the scene, we
need to model the interactions within the scene and the
organization and semantics of the scene as a whole. This
will certainly require advances in local analysis, but, more
importantly, there is a great need for methods to reason
about the various pieces of the scene in a coherent and
intelligent fashion.
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