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Abstract

In this paper, we consider the problem of recovering the
spatial layout of indoor scenes from monocular images. The
presence of clutter is a major problem for existing single-
view 3D reconstruction algorithms, most of which rely on
finding the ground-wall boundary. In most rooms, this
boundary is partially or entirely occluded. We gain robust-
ness to clutter by modeling the global room space with a
parameteric 3D “box” and by iteratively localizing clutter
and refitting the box. To fit the box, we introduce a struc-
tured learning algorithm that chooses the set of parameters
to minimize error, based on global perspective cues. On
a dataset of 308 images, we demonstrate the ability of our
algorithm to recover spatial layout in cluttered rooms and
show several examples of estimated free space.

1. Introduction

Look at the image in Fig. 1. From this single image,
we humans can immediately grasp the spatial layout of the
scene. Our understanding is not restricted to the immedi-
ately visible portions of the chairs, sofa, and walls, but also
includes some estimate of the entire space. We want to pro-
vide the same spatial understanding to computers. Doing
so will allow more precise reasoning about free space (e.g.,
where can I walk) and improved object reasoning. In this
paper, we focus on indoor scenes because they require care-
ful spatial reasoning and are full of object clutter making the
spatial layout estimation difficult for existing algorithms.

Recovering Spatial Layout. To recover the spatial lay-
out of an image, we first need to answer: how should
we parameterize the scene space? Existing parametriza-
tions include: a predefined set of prototype global scene
geometries [17]; a gist [18] of a scene describing its spa-
tial characteristics; a 3D box [11, 23] or collection of 3D
polyhedrals [6, 15, 19]; boundaries between ground and
walls [1, 4]; depth-ordered planes [26]; constrained ar-
rangements of corners [13]; a pixel labeling of approximate
local surface orientations [9], possibly with ordering con-
straints [14]; or depth estimates at each pixel [22]. Models
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Figure 1. We model the space of a room with a 3D box layout of
its entire extent (black lines) and surface labels that localize visible
objects (pink regions). By estimating the joint box parameters us-
ing global perspective cues and explicitly accounting for objects,
we are often able to recover the spatial layout in cluttered rooms.

with few parameters allow robust estimation at the risk of
introducing bias. But even loosely parameterized models
may not capture the full spatial layout. For instance, depth
maps provide only local information about visible surfaces
and may not be useful for path planning in densely occu-
pied scenes. Our approach is to model the scene jointly in
terms of a 3D box layout and surface labels of pixels. The
box layout coarsely models the space of the room as if it
were empty. The surface labels provide precise localization
of the visible object, wall, floor, and ceiling surfaces. By
modeling both of these together, we attain a more complete
spatial layout estimate. We also gain robustness to clutter
from the strongly parameterized box layout, without sacri-
ficing the detail provided by the surface labels.

Once we decide how to parameterize the spatial lay-
out, how do we estimate the parameters using image cues?
Region-based local color, texture, and edge cues, often
combined with segmentation or CRF inference have been
used with success [9, 14, 22] for labeling pixels according
to orientation or depth. Accordingly, we use Hoiem et al.’s
algorithm [9] and color, texture, position, and perspective
cues to estimate confidences for our surface labels. But
these region-based approaches and local cues are sensitive
to clutter and, therefore, not suitable for the 3D box estima-
tion. For instance, estimating the box parameters by looking
for the wall-floor, wall-wall, and wall-ceiling boundaries in



Figure 2. Our process takes the original image, identifies long line segments (A), and uses these to find vanishing points (B). The line
segments in (A) are colored with the color of the vanishing point they vote for. This information, and other features, are used to produce
a set of possible layouts, which are ranked by a function learned with structure learning (four are shown in C). The top ranked layouts

produce maps of label probabilities (shown in D for “left wall”,“floor

right wall” and “object”). In turn these maps are used to re-estimate

features, and the re-estimated features are used to produce a second ranking. The top ranked layout for this image is in (E).

the image can be effective only when those boundaries are
visible, which is usually not the case. We propose to esti-
mate the box parameters in two steps. First, we find mu-
tually orthogonal vanishing points in the image, specifying
the box orientation. Then, we sample pairs of rays from two
of the vanishing points, which specifies the translation of
the walls. We propose a structured learning [25] approach
to select the joint set of parameters that is most likely to
maximize the similarity to the ground truth box based on
global perspective cues.

The box layout and surface labels are difficult to estimate
individually, but each provides cues that inform the other.
For this reason, we iteratively estimate the box and surface
labels, estimating parameters for one based, in part, on cues
computed from the current estimate of the other. Our exper-
iments show that this leads to roughly a one-third reduction
in error for the box layout and surface label estimates. This
integrative scene analysis is conceptually similar to recent
work (e.g., [8, 10, 2, 16, 24]) on combining object, depth,
viewpoint, occlusion boundary, scene category, and/or sur-
face orientation estimates. However, our method is the first
to integrate local surface estimates and global scene geom-
etry, and we define appropriate techniques and interaction
cues to take full advantage of their synergy.

Clutter. Most rooms are full of objects, presenting a
major problem for existing spatial layout estimation meth-
ods. In some cases, the issue is the choice of scene
space model. For instance, the assumption of a continu-
ous ground-vertical boundary made by Delage et al. [4] and
Barinova et al. [1] is not valid for cluttered scenes. Like-
wise, Hoiem et al. [9, 10] cannot estimate the depth of walls
when their boundary is fully occluded. The method of Liu
et al. [14] to label into floor, walls, and ceiling does not
account for objects and has difficulty assigning the correct
label to the occluded walls or floor. In other cases, such as
Nedovic et al. [17], the texture and edges on objects obscure
the scene shape. In all of these cases, clutter is an acknowl-
edged problem (see Sec. 5.1 for experimental comparison).

Summary of Contributions. Our main contribution is
an approach to recover spatial layout of indoor scenes in a
way that is robust to clutter. We achieve robustness for three

main reasons. First, our strongly parameteric 3D box model
allows robustness to spurious edges and is well-suited to de-
scribe most room spaces. Second, we propose a new algo-
rithm to jointly estimate the box parameters, using struc-
tured learning to predict the most likely solution based on
global perspective cues. Third, we explicitly model clutter
and propose an integrated approach to estimate clutter and
3D box, each aiding the other. The surface labels allow us to
distinguish between lines that lie on objects and those that
lie on walls (improving the box estimates), while the box es-
timates provide strong constraints on the surface labels. Our
experiments on 308 images of indoor scenes show that our
method can accurately estimate spatial layout in cluttered
scenes and that the above innovations greatly contribute to
its success. We also show that our recovered spatial layout
can be used to estimate the free space of a scene by mak-
ing some simple assumptions about the objects (Sec. 5.3).
While we have focused on indoor scenes in this paper, we
believe that many of the contributed models and techniques
will be useful for estimating spatial layout in other types of
scenes.

2. Overview of Approach

Our approach is illustrated in Fig. 2. We first find straight
lines in the image (Fig. 2A) and group them into three mu-
tually orthogonal vanishing points [20, 12, 3] (Fig. 2B). The
vanishing points specify the orientation of the box, provid-
ing constraints on its layout. By sampling rays from these
vanishing points, we generate many candidates for the box
layout (Fig. 2C) and estimate the confidence for each using
edge-based image features and learned models. We then
estimate the surface labels given the most likely box can-
didate, providing a set of confidence maps from pixels to
surfaces (Fig. 2D). The surface labels, in turn, allow more
robust box layout estimation (Fig. 2E) by providing confi-
dence maps for visible surfaces and distinguishing between
edges that fall on objects and those that fall on walls, floor,
or ceiling.



(a) (b)

Figure 3. (a) Angular distance of a line segment to a vanishing
point, computed as the angle between the line segment and the
line joining the mid point of the segment to the vanishing point.
(b) Line memberships: red, green and blue lines correspond to 3
vanishing points, and the outlier lines are shown in cyan.

3. Estimating the Box Layout

We generate candidate box layouts in two steps. First,
we estimate three orthogonal vanishing points using a stan-
dard algorithm (Sec. 3.1) to get the box orientation. Next,
by sampling pairs of rays from two of these vanishing points
(Sec. 3.2), we specify set of wall translations and scalings
that are consistent with the orientation provided by the van-
ishing points. Choosing the best candidate layout is diffi-
cult. We propose a criteria that measures the quality of a
candidate as a whole and learn it with structured outputs
(Sec. 3.3).

3.1. Estimating the Box Orientation

Under perspective projection, parallel lines in 3D inter-
sect in the image plane at vanishing points. We assume that
the room can be modelled by a box layout and that most
surfaces inside the room are aligned with the room direc-
tions. We want to estimate a triplet of vanishing points cor-
responding to the three principal orthogonal directions of a
room, which specifies the box layout orientation. Several
works [3, 12, 20] address estimation of vanishing points
from an image (see [5] for an excellent discussion). In
our implementation, we modify Rother’s algorithm [20] for
finding mutually orthogonal vanishing points with more ro-
bust voting and search schemes. Rother ranks all triplets
using a voting strategy, scoring angular deviation between
the line and the point (see Fig. 3(a)) and using RANSAC
driven search. Candidate points are chosen as intersection
points of all detected lines, among which triplets are se-
lected. We use an alternate greedy strategy. We first select
the candidate point with the highest vote and then remove
lines that cast high votes for this point. We quantize the re-
maining intersection points using variable bin sizes in the
image plane, increasing as we go outwards from the image
center. We use variable sizes because the position errors for
vanishing point close to the image center are more critical to
the estimation of room box rotation. The above operations
drastically reduce the complexity of search space and works
well for indoor scenes, where most lines lie along one of the

principal directions.

We also extend the linear voting scheme used in [20]
to a more robust exponential voting scheme. This makes
the voting space more peaky, facilitating discrimination be-
tween good and bad vanishing point candidates. We define
the vote of a line segment [ for a candidate point p as,

v(l.p) = [I| ¥ exp ~(55) (M

a , where, is the angle between the line connecting p and
midpoint of /, as shown in Fig. 3(a), and ¢ is the robust-
ness threshold. In all our experiments, we set ¢ = 0.1. The
straight lines of length greater than 30 pixels are used for
estimation, resulting in 100-200 lines per image. Once the
winning triplet is identified, each detected line in the image
can be assigned to one of the vanishing points according to
the vote it casts for these points, which we refer to as line
membership. Fig. 3(b) shows lines corresponding to dif-
ferent vanishing points in different colors. The lines which
cast votes below threshold are assumed to be outlier lines
shown in cyan.

3.2. Getting the Box Translation

Knowledge of the box orientation imposes strict geomet-
ric constraints on the projections of corners of the box, as
shown in Fig. 4 and listed below. At most 5 faces of the
box,corresponding to 3 walls, floor and ceiling, can be vis-
ible in the image, each projecting as a polygon. The 3D
corners of the box are denoted by A, B, C, and D, and their
counterparts in the image are a, b, ¢ and d. The vanishing
points corresponding to three orthogonal directions in world
are given by vp;, vpa, and vps.

1. Lines ab and cd should be colinear with one of the van-
ishing points, say vp1,

2. Lines ad and bc should be colinear with the second
vanishing point, vpy, and,

3. The third vanishing point, vps, should lie inside the
quadrilateral abed.

To generate the candidate box layouts, we choose vp; and
vpg as the two farthest vanishing points (see Fig. 4) and
draw pairs of rays from these points on either side of vps.
The intersections of these rays define the corners of the mid-
dle wall, a — d in the image. The rest of the face polygons
are generated by connecting points a — d to vps. When
fewer than 5 faces are visible, the corners will lie outside
of the image, handled by a single dummy ray not passing
through the image. An example box layout is overlaid in
red in Fig. 4. In our experiments, we use 10 evenly spaced
rays per vanishing point to generate the different candidate
layouts for an image.



Figure 4. Layout generation: Once the vanishing points are
known, we sample the space of translations. A layout is com-
pletely specified by two rays through each of two vanishing points,
which give four corners and four edges, and the remaining edges
of the box follow by casting rays through the third vanishing point
and these corners.

3.3. Learning to Rank Box Layouts with Structured
Outputs

We want to rank the box layouts according to how
well they fit the ground truth layout. Given a set of in-
door training images {1, 2, ...x,,} € X and their layouts
{y1,92,...yn} € Y we wish to learn a mapping f : X, Y —
R which can be used to assign a score to the automatically
generated candidate layouts for an image, as described in
Sec. 3.2. Each layout here is parameterized by five face
polygons, y = {F}y, Fy, F3, Fy, F5}. The mapping f should
be such that f(z;,y) takes a high value for the correct com-
bination of input image and layout, ¥y = ¥;, and its value
reduces as the deviation of y from y; increases. Thus, for
a new test image x, the correct layout can be chosen as y*,
where,

y* = argmax f(z,y; w) 2)
Yy

The above is a structured regression problem, where the
output is not a binary decision, but a layout which has a
complex structure. To solve this, we use the structured
learning framework described in [25], which models the
relationships between different outputs within the output
space to better utilize the available training data. We set,
f(z,y) = wTy(z,y), where ¢(x, y) is a vector of features.
The mapping f is learned discriminatively by solving
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where ¢;’s are slack variables, A(y;,y) is the loss function
quantifying the deviation between two layouts, C is a scal-

ing constant, and, ¥ (z;, y) is the set of features extracted for
image layout pair (x;,y). In our experiments, we choose
C = 1. We define the loss function A with three terms:
A, penalizes the absence of a face F}, in one layout if it is
present in the other one; A. measures the shift in centroid
¢, of the faces of the two layouts; and A, is the sum of pixel
errors of the corresponding faces of the two layouts, which
is measured as their areas of overlap.
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where 0(Fi,, Fi,) = 1 if Area(Fjr) > 0 and
Area(Fy) = 0 or Area(F;) = 0 and Area(Fy) > 0;
otherwise 6 (Fj, Fy) = 0.

For a given choice of loss function and features the de-
fined objective function is convex with linear constraints.
However the a large number of constraints is usually a bind-
ing factor in solving such problems. In our case the number
of constraints are manageable, due to the sampling of rays.
However if a denser sampling is performed, one would need
to resort to other approximate methods like those described
in [25].

Features. ¢)(x;,y) is the set of features of layout . We
use the line membership features that depend on detected
straight lines in the image and their memberships to the
three vanishing points, as defined in Sec. 3.1. For each face
F, the unweighted line membership feature f; is defined
as,

_ Yiec, il
leELk |lj|

where L, is the set of lines in Fy, C} is the set of lines
which belong to the two vanishing points for face Fj. We
denote length of line by |{|.

Since each face is characterized by two vanishing points,
most of the lines inside each face should belong to one of
these two vanishing points. However this is not necessarily
true for the lines on objects. For instance, in Fig. 2, the red
lines on the sofa and table correspond to vertical vanishing
point but fall inside the floor face. For this reason, we also
compute a set of line memberships that are weighted by the
confidence that a line is not inside an object region (esti-
mated as part of the surface labels, described in Sec. 4). We
also include the average pixel confidences for the surface la-
bels within each face, which incorporates information from
the color, texture, and perspective cues that influence the
surface labels. Note that the box layout is first estimated
without these surface-based features and then re-estimated
using all features after estimating the surface labels.

Ji(Fy) (%)



4. Estimating Surface Labels

It is difficult to fit the box layout to general pictures of
rooms because “clutter”, such as tables, chairs, and sofas,
obscures the boundaries between faces. Some of the fea-
tures we use to identify the box may actually lie on this
clutter, which may make the box estimate less accurate. If
we have an estimate of where the clutter is, we should be
able to get a more accurate box layout. Similarly, if we
have a good box layout estimate, we know the position of
its faces, which should allow us to better localize the clutter.

To estimate our surface labels, we use a modified version
of Hoiem et al.’s surface layout algorithm [9]. The image is
oversegmented into superpixels, which are then partitioned
into multiple segmentations. Using color, texture, edge,
and vanishing point cues computed over each segment, a
boosted decision tree classifier estimates the likelihood that
each segment is valid (contains only one type of label) and
the likelihood of each possible label. These likelihoods are
then integrated pixel-wise over the segmentations to provide
label confidences for each superpixel. We modify the algo-
rithm to estimate our floor, left/middle/right wall, ceiling,
and object labels and add features from our box layout. As
box layout features, we use the percentage area of a segment
occupied by each face and the entropy of these overlaps,
which especially helps to reduce confusion among the non-
object room surfaces. In training, we use cross-validation
to compute the box layout cues for the training set.

5. Experiments and Results

All experiments are performed on a dataset of 308 in-
door images collected from the web and from LabelMe
[21]. Images include a wide variety of rooms including, liv-
ing rooms, bed rooms, corridors etc (see Fig. 6). We label
these images into ground truth box layout faces: polygon
boundaries of floor, left wall, middle wall, right wall, and
ceiling. We also label ground truth surface labels: segmen-
tation masks for object, left, middle, and right wall, ceiling,
and floor regions. We randomly split the dataset into a train-
ing set of 204 and test set of 104 images.

We first evaluate the accuracy of our box layout and sur-
face label estimates (Sec. 5.1). Our results indicate that
we can recover layouts in cluttered rooms, that the integra-
tion of surface labels and box layout is helpful, and that
our method compares favorably to existing methods. In
Sec. 5.2, we then analyze the contribution of errors by van-
ishing point estimation and ray sampling in estimating box
translation. Finally, we show several qualitative results for
free space estimation in Sec. 5.3.

5.1. Evaluation of spatial layouts

We show several qualitative results in Fig. 6, and report
our quantitative results in Tables 1, 2 and 3.

Method Hoiem et al. | Ours (initial) | Ours (final)
Pixel error 28.9% 26.5% 21.2%
Corner error - 7.4% 6.3%

Table 1. Error for box layout estimation. Our method achieves
lower error than Hoiem et al.’s region labeling algorithm [9] and
improves significantly further after re-estimation using cues from
the surface label estimates (final). See text for details.

Method
Pixel error

Hoiem et al. | +Box Layout (ours)
26.9% 18.3%

Table 2. Pixel error for surface label estimation. Use of cues based
on our box layout estimates significantly improves results from
Hoiem et al.’s surface layout algorithm [9], which was also trained

on our dataset.

Surface labels | Floor | Left | Middle | Right | Ceiling | Objects
Floor 74/68 | 0/0 0/1 0/1 0/0 24/30
Left 1/0 | 75/43 | 14/44 0/0 1/1 9/12
Middlle 1/0 52 76182 4/6 2/1 13/9
Right 1/1 0/0 14/48 | 73/42 3/2 1077
Ceiling 0/0 4/3 28/47 2/5 66/45 0/0
Objects 16/12 | 1/1 5/10 12 0/0 76/76

Table 3. Confusion matrix (Ours/Hoiem et al.) for surface label
estimation. The (¢, j)-th entry in a confusion matrix represents the
percentage of pixels with ground truth label ¢ which are estimated
as label 7, over all test images.

Box Layout. We evaluate the box layout using both pixel
error, computed as the percentage of pixels on the box faces
that disagree with ground truth, and the RMS error of cor-
ner placement as a percentage of the image diagonal, av-
eraged over the test images. As shown in Table 1, we im-
prove in both measures when re-estimating layouts using
the surface label cues (pixel error: 26.5% to 21.2%; corner
error: 7.4% to 6.3%). Our method also outperforms Hoiem
et al.’s algorithm [9] (pixel error: 28.9%), which we trained
on our dataset as a baseline. Note that we cannot compute
RMS error for Hoiem et al.’s algorithm, since it may not
provide an estimate that is consistent with any 3D box lay-
out. In Fig. 5, we also qualitatively compare several meth-
ods [9, 14, 1]. Our method is better able to deal with clutter
in indoor scenes, due to its joint estimation of box layout
parameters (based on structured learning) and the explicit
modeling of clutter using surface labels.

Surface Labels. Our surface label estimates improve
considerably (by 8.6% average pixel error) due to inclusion
of cues from the box layout, as shown in Table 2. The con-
fusion matrix shown in Table 3 also exhibits considerable
gains. Ceiling and wall estimates especially improve be-
cause they are difficult to classify with local color and tex-
ture cues and because an estimate of the box layout provides
a strong prior.

5.2. Error Analysis

Errors in vanishing point estimation and coarse sampling
of rays when generating box layout candidates also con-



Input Image Hoiem et al. [9] Liu et al. [14] Barinova et al. [1] Our Algorithm

Figure 5. Qualitative comparison of box layout estimation for several methods. On the left, we show the input image. Then, from left
to right, we compare four methods. Column 2: Most likely labels from Hoiem et al.’s algorithm [9] (floor=green; left wall=red; middle
wall=yellow; right wall=cyan; ceiling=blue;). Column 3: Improved estimates using Liu et al.’s [14] ordering constraints, intialised by [9].
Column 4: Barinova et al.’s algorithm [1] recovers the ground vertical boundary as a continuous polyline (thick red) and indicates wall
faces with a white spidery mesh and thin red lines. Column 5: Our algorithm. Note that Barinova et al.’s algorithm was trained on urban
imagery, causing the boundary to shift upwards due to a prior for deeper scenes. Hoiem et al.’s method is sensitive to local contrast (row 1:
reflection on the floor) and clutter (rows 2-4). The ordering constraints of Liu et al. improve results but cannot fix large errors. Barinova
et al.’s algorithm is more robust but still has trouble with clutter, due to its assumption of a continuous ground-vertical polyline which is
not true for cluttered rooms. Our box parameterization of scene space is similar to that of Barinova et al., but our method is more robust
to clutter because we search the joint space of all the box parameters (learning with structured outputs), which contrasts with their greedy
search strategy. Our approach of explicitly modeling clutter with the surface labels provides a further improvement. Best viewed in color.

The best possible layout is the one with the least pixel error
e w.r.t. to ground truth layout among all the candidates gener-
ated under the constraints imposed by the vanishing points
(VPs). We can see that even with very fine sampling (35
rays per VP), the error is sometimes high, which is due to
error in estimating the vanishing points. For 7, 10, 14, 20,
and 35 sampled rays, the average minimum possible error
e e (assuming a perfect layout ranker) is 11.6%, 8.3%, 6.7%,
(a) (b) 5.3%, and 4.0%. Thus, about 4% of our error is likely due
to our coarse sampling of 10 rays. In Fig. 7(b) we compare
the top-ranked layout for our test images according to our
learned parameters and the best possible layout for these im-
ages after sampling 10 rays. The average gap between the
error of the layout predicted as best by our method and the
best possible layout using this ray sampling is 13.0%, which

Figure 7. (a) Each curve shows the lowest pixel error between
the ground truth layout and all generated layouts of an image for a
given number of ray samples. Shown for all 308 training images.
(b) For 10 ray samples per vanishing point, green and blue curves
show the lowest possible achievable pixel error using any layout,
and the pixel error of the layout estimated by our algorithm, re-

spectively. Shown for all 104 test images.

tribute to our errors in spatial layout estimation. In Fig. 7(a),
we compare the accuracy of the best possible box layout,
while varying the granularity of ray sampling (see Sec. 3.2).

is due to the errors in our ranking estimates (Sec. 3.3, 4).

As we show in Sec. 5.3, even small errors in the spatial
layout can have large effects on 3D reasoning. For instance,
placing the wall-floor boundary even slightly too high in the
image can greatly exaggerate the depth of the room (Fig. 8,



Figure 6. Qualitative test results for our spatial layout estimation. We show an even sampling from least to highest pixel error (left-to-right,
top-to-bottom). For each image, original image with detected lines is shown in the top row, the detected surface labels in the middle row,
and estimated box layout in the bottom row. Lines corresponding to the three vanishing points are shown with red, green and blue color
and the outliers are shown in cyan. Each surface label is shown in different color (floor=green; left wall=red; middle wall=yellow; right
wall=cyan; ceiling=blue; objects=pink) and the saturation of color is varied according to the confidence of that surface label. The box
layout is shown with red lines. Notice that due to the accuracy of estimated vanishing points, most of the images have nearly all correct
line-memberships. The estimates of box rotation suffer if large number lines features are not aligned in room directions (6th row, 4th
column and 6th row, 5th column). The line membership features are not effective if the available line support in any particular direction is
small (6th row, 2nd column). Note that these are the cases which account for highest pixel errors. Best viewed in color.

last row). Considering this, we believe that the improve-
ment achieved in Tables 1, 2, 3 can make a significant differ-
ence when the layout is used to help understand the scene.

5.3. Free space estimation

We demonstrate the application of our estimated spatial
layouts towards recovering the free space inside a room.
As shown in Fig. 8, the surface labels provide object confi-
dences at each pixel in the image which can be thresholded
to localize object pixels. We need to find the 3D location
of these object pixels to recover free space. The location of

the vanishing points provides camera calibration and a 3D
reconstruction of the box up to a scale [7, 20]. To obtain an
absolute estimate of free space, we assume that the camera
is 4.5 feet above the floor (at about chest height), giving a
complete projection matrix; alternative possible sources of
information include the tendency of beds, tables and other
objects to be at fairly regular heights [8].

Using this projection matrix, we determine the visual
hull corresponding to object pixels. Assuming that the ob-
jects are supported by floor and are cuboid shaped, the foot-
print provides us with a vertical hull for the object. To esti-



Figure 8. Qualitative results for free space estimation. For each
row image in first column shows original image with object sup-
port,(obtained from our surface labels) shown in pink and the es-
timated box layout overlaid on the top in red. The second column
shows the result of our free space estimation. Occupied voxels
are shown in pink in the rendered 3D room. Note that free space
estimation accuracy depends on the accuracy of box layouts and
surface labels. First and second row show the result with accu-
rate estimated box layout and surface labels, third row with bad
box layout, and the fourth row with bad surface labels. Notice that
small errors in box layout can result in considerable errors in 3D
space. Best viewed in color.

mate this footprint, we project object pixels to floor face of
the estimated box layout. The intersection of visual hull and
vertical hull provides us with the occupied portion of the
room. We estimate this occupied portion as voxels with 0.5
feet resolution Fig. 8 shows estimated free space for some
examples with the occupied voxels shown in pink.

6. Conclusion

We have proposed an approach to recover spatial layout
of cluttered indoor scenes by modeling them jointly in terms
of a 3D box layout and surface labels of pixels. Our experi-
ments show that the integrated reasoning of box layout and
object clutter allows better estimation of each. Our spatial
layout estimates are robust to clutter and can be used to es-
timate free space and more precisely reason about objects.
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